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M. Kunick, R. A. Berry, H.-J. KretzschmandU. Gampe

Application of the new IAPWS Guideline on the faatd
accurate calculation of steam and water propewtigis the
Spline-Based Table Look-Up Method (SBTL) in RELAP-7

The numerical simulation of thermalhydraulic praEssin nuclear power plants requires very
accurate and extremely fast algorithms for caltudathe thermophysical properties of water
and steam. In order to provide such algorithms, lternational Association for the
Properties of Water and Steam (IAPWS) has adopieaéw “IAPWS Guideline on the Fast
Calculation of Steam and Water Properties with $ipine-Based Table Look-Up Method
(SBTL)” [1]. In this article, the SBTL method is piped to property functions of specific
volume and specific internal energyd) based on the scientific formulation IAPWS-95 and
the latest IAPWS formulations for transport propert From the newly generated SBTL
functions, thermodynamic and transport propertiesvall as their derivatives and inverse
functions are calculable in the fluid range of stébr pressures up to 100 MPa and for
temperatures up to 1273 K, including the metasthdped and the metastable vapor regions.
The SBTL functions reproduce the underlying forniolas with an accuracy of 10-100 ppm
and significantly reduced computing times. The SBiigéthod has been implemented into the
nuclear reactor system safety analysis code RELAR-0 consider the real fluid behavior of
water and steam in a novel 7-equation two-phase ritmdel.

Anwendung der neuen IAPWS-Richtlinie zur schnellerd
genauen Berechnung der Eigenschaften von Wasser und
Wasserdampf mit dem Spline-Basierten Table Look-up
Verfahren (SBTL) in RELAP-7

Die numerische Simulation thermohydraulischer Psseen Kernkraftwerksanlagen erfordert
sehr genaue und extrem schnelle Stoffwert-Bereasalgorithmen fiir Wasser und
Wasserdampf. Zu diesem Zweck hat die Internatiésabciation for the Properties of Water
and Steam (IAPWS) die neue “IAPWS Guideline onRhst Calculation of Steam and Water
Properties with the Spline-Based Table Look-Up Mdti(SBTL)” [1] verabschiedet. In
diesem Beitrag wird das SBTL Verfahren auf Stofffearktionen von spezifischem Volumen
und spezifischer innerer Energied) basierend auf der wissenschaftlichen Formulierung
IAPWS-95 und den neuesten IAPWS Standards fur patesigenschaften angewendet. Mit
den neuen SBTL Funktionen lassen sich die thermmdisthen Zustandsgréf3en und
Transporteigenschaften sowie deren Ableitungen whahkehrfunktionen im fluiden
Zustandsgebiet bei Drucken bis zu 100 MPa und Tesyren bis zu 1273 K, inklusive der
metastabilen Gebiete fur Uberhitzte Flussigkeit unterkihltes Gas, berechnen. Die SBTL
Funktionen geben die zugrundeliegenden Formuliemngnit einer Genauigkeit von 10-
100 ppm und erheblich reduzierten Rechenzeiteneaniddias SBTL Verfahren wurde in den
zur Sicherheitsanalyse von Kernreaktorsystemen iekiiten Code RELAP-7 [2]
implementiert um das reale Zustandsverhalten voeséfaund Wasserdampf in einem neuen
7-Gleichungsmodell fur die Zweiphasenstromung atidlesichtigen.



1 Introduction

The analysis of thermalhydraulic processes in rauclpower plants with numerical
simulations is of particular importance for safedgsessment and the development of
advanced technologies. For these simulations, mystedes and Computational Fluid
Dynamics (CFD) are widely in use. In particulae thetailed analysis of transient processes is
computationally intensive and requires long commuttimes. A large portion of the
computing time is demanded for the calculationloidf properties. In the thermalhydraulic
system code RELAP-7 [2] as well as in density baSED solvers, fluid properties are most
frequently calculated from specific volume and $jpednternal energy \(,€). Furthermore,
numerically consistent inverse functions of pressand temperaturep,), pressure and
specific volume§,v), pressure and specific enthalpyhi, pressure and specific entrogysi,

and specific enthalpy and specific entropyg) are required. The calculation of these property
functions from accurate fundamental equationsatestsuch as the IAPWS Formulation 1995
for General and Scientific Use (IAPWS-95) [3, 4} fwater and steam, requires iterative
algorithms leading to inacceptable computing timiégr faster property calculations, the
IAPWS Industrial Formulation 1997 (IAPWS-IF97) B, and its supplementary releases on
backward equations [7, 8, 9, 10] enable computatibom @,T), (p,h), (p.s), and {,9)
without iterative procedures. Due to the imperfaamerical consistency with the basic
equations of IAPWS-IF97, the application of backivaquations for simulating processes
with small spatial and time discretization can le@ad convergence problems. In these
situations, inverse functions must be calculatedtésation from the basic equations with
starting values determined from the available backiequations. Backward equations do not
exist for functions of \(,e) and f,v) or for fluids other than water and steam. Thawsfo
property calculations are often simplified, fortarsce with cubic equations of state or with
the ideal-gas model. This leads, depending on &nge of state, to inaccurate simulation
results. To calculate fluid properties more ac@lyabut with reasonable computing times,
so-called table look-up methods are frequently iadplFor these methods, the desired fluid
properties are interpolated from previously taledavalues, which are calculated from an
accurate property formulation. The Spline-Basedlddmok-up method (SBTL) has been
developed in a project of the International Asstarafor the Properties of Water and Steam
(IAPWS) and was adopted as a Guideline [1, 11,iA2)015. This method has been applied
successfully in the CFD code TRACE of the Germamo8gace Agency (DLR) [13] and
other codes for process simulations. In this wtnk, SBTL method is applied to IAPWS-95
to consider the real fluid behavior of water andast in RELAP-7 [2]. From the newly
generated SBTL functions, thermodynamic and tramspooperties as well as their
derivatives are calculable. The range of validiyears the stable fluid phases for pressures up
to 100 MPa and temperatures up to 1273 K as wethetsstable states in the superheated
liquid phase and the subcooled vapor phase. Ther ligt of particular importance to enable
the 7-equation two-phase flow model in RELAP-7 [@phd to consider the delayed
condensation in the simulation of low-pressure raterbines in CFD. Furthermore,
numerically consistent inverse functions for vasianput variable combinations are provided.



2 List of symbols

Symbol  Quantity

a Spline polynomial coefficient

Cp Specific isobaric heat capacity
Cv Specific isochoric heat capacity
f Function

floor() Round down

Vector of functions

Specific Gibbs free energy
Specific enthalpy

Interval index; Cell index iw direction
Number of nodes alor p for T.(p) or alongVv for p(V, €
Cell index ine direction
Number of nodes along
Jacobian matrix

Serial number; Exponent
Serial number; Exponent
Pressure

Transformed pressure
Specific entropy
Temperature

Specific internal energy
Specific volume
Transformed specific volume
Speed of sound

Vapor fraction

Vector of unknowns
Dynamic viscosity

Thermal conductivity
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Superscript

AUX  Auxiliary spline function

G Spline function for the gas region
INV Inverse spline function

K Knot

L Spline function for the liquid region
T Transposed

‘ Saturated-liquid state
Saturated-vapor state

Subscript

i Cell index inV directior
j Cell index ine direction
lig_spin At the liquid spinodal

S At saturation




3 The Spline-Based Table L ook-up method (SBTL) and itsapplication to |APWS-95

For fast and accurate property calculations in mgakprocess simulations, table look-up
methods are frequently applied. For these methaidsrete values of the required properties
are calculated from accurate property formulatiand are stored as nodes in look-up tables.
During the process simulation, properties are datexd from the tabulated values with
simple interpolation or approximation algorithmsithocal algorithms, such as bi-linear or
local bi-cubic interpolation, properties within allcof the look-up table are calculated from
adjacent values only, as opposed to global methatisye all tabulated values are used.
Although local algorithms are easily implementdweyt do have their deficiencies. Bi-linear
interpolation requires comparatively large looktaples to represent the fluid properties with
acceptable accuracy and does not provide contindmss derivatives. Local bi-cubic
interpolation overcomes these problems, but thecuGion of inverse functions is
computationally intensive, as it requires the eatin of trigonometric functions. Moreover,
to achieve the desired accuracy over the entirgeraf state, the look-up tables are frequently
prepared with variable distances between the no@lkes requires extensive cell search
algorithms during the property calculation and dases the computing speed.

In order to provide fast and accurate property waton algorithms for computationally
intensive process simulations, the Spline-BasedeThbok-up Method (SBTL) [1, 11, 12]
was developed in a project of the Internationalogsstion for the Properties of Water and
Steam (IAPWS). Spline functions are continuoussg@ase defined functions. For pure fluids
or mixtures at constant composition, phase bouesgasuch a3<(p), are represented by one-
dimensional spline functions, whereas the propeitig¢he single-phase region, suctp@se),

can be described by two-dimensional spline funestioffor mixtures with variable
composition, the method can be extended using wvauitite spline interpolation.
Alternatively, a mixture model can be used, wheeehepure component is described
separately. In most numerical process simulatipraperty functions need to be continuously
differentiable once. Global spline interpolatioma@ithms with second-degree polynomials
are capable to fulfil this requirement. By meansafiable transformations, the function to be
interpolated is linearized. The spline functiomanstructed on piecewise equidistant nodes in
transformed coordinates. This results in simpleckealgorithms to find the interval or cell in
the look-up table, which corresponds to the giveput variables. In this way, the underlying
property formulations can be reproduced with higitugacy and low computing time.
Moreover, second-degree polynomials can easily dieed analytically in terms of the
independent variables. This enables the fast clonl of numerically consistent inverse
functions.

In this work, the SBTL method is applied to progdtinctions for water and steam based on
IAPWS-95 for the range of validity outlined in Sect 3.1. In Sections 3.2 - 3.5, the basic
principles of the SBTL method are described for-cared two-dimensional spline functions.
In Sections 3.6 - 3.9, the newly generated SBTIcfions are presented.



3.1 Rangeof validity

The range of validity of the generated SBTL propdunctions is subdivided into the liquid
region L, the gas region G, and the stable two-phegion TP. It is bounded as follows:

27315 KsT<1273.15K 611.212677 Rap < 100 MPa.
The lower pressure limit is set py(273.15 K) = 611.212677 Pa. Figure 1 shows thediqu
region L, which also includes the metastable swgmdd liquid phase between the saturated
liquid curve &=0) and the liquid spinodal. Analogously, the gagion G includes the
metastable subcooled vapor phase between the tegturapor curvexEl) and the vapor
spinodal as shown in Figure 2. The boundary betweeniquid region L and the gas region
G is defined by the specific internal energy at¢hgcal pointe; = 2015.734524 kJ/kg.
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Figure 1: Region L in there plane. Figure 2: Region G in the-e plane.

3.2 Onedimensional splinefunctionsusing the example of Ts(p)

In this example for one-dimensional spline funcsioa quadratic spline function fdg(p) is
generated. In order to enhance the accuracy ofraespolation or approximation method, it
is advantageous to linearize the function to berpulated first by means of suitable variable
transformations. For many saturation-pressure @mqmst temperature and pressure are
transformed asT =T and p=In(p). The computation of the natural logarithm is
computationally intensive since it is not an algebrfunction. For a computationally more
efficient linearization, the pressure is transfodmesing p :ﬂ/_p and the temperature
transformation is omitted. In this way, the chamgeurvature, which cannot be reproduced
by a quadratic polynomial, is reduced and the tegubpline function is more accurate. The
effect of this simple variable transformation i®aim in Figs. 3 and 4.



The spline function is created in transformed cowids and interpolates values between a
series ofl discrete data points, the so-called nodes (see4figrhe Tq;(Q) values at the
nodes are calculated from the underlying equatibistate. Thel spline polynomials are
connected at knots, which are located in the midiefsveen the nodes along. The p*
values of thd+1 knots are

I .

p,*il=5(|q +Rea), i=1,..1-1 (1.1)
1, w1,

Pl = P12 (P2~ R, and Pa=B+5(R =) (1213

The Ts positions of the knots result from the spline alpon as explained below. A spline
polynomial ranges over the interva} petween two knots

P <p<da (1.4)
and intersects the nodg at T; () . The number of nodes is chosen to ensure the required
accuracy of the spline function over its full domaif definition. The nodes are distributed
equidistantly alongp so that a simple search algorithm can be usedetermine the
interval {i} in the series of knots that fulfills Eq. 1.4 fargiven transformed variablp. For
equidistant nodes, and therefore equidistant kingt easily be calculated from

=_ =K
i :floor(%} (1.5)
Ap
The distribution of nodes and knots can also be pudaied by piecewise equidistant nodes,
in ranges for whiclAp = B4 — R Is constant. In each interval{a quadratic polynomial

3
T (=Y a (P 7). (1.6)
k=1

is defined. The Bcoefficientsai of thel spline polynomials are obtained from the following
conditions. Each of thbpolynomiaIsTs,{ ) (T)) intersects the nodé) (

T} (R)=T (M), i=1..|. (1.7)
In addition, theTs values at the inndrl knots are equal for the adjacent polynomials
T (B%) = Ty (Fa). i=1,..)1-1 (1.8)
The first derivatives with respect  at each of these knots are also equal
dTS —_K dTS —_K .
— (Pu]=—F A1) i=1..1 -1 (1.9)
dr’{i}( ) Om{m}( )
At the outer knots, these derivatives are calcdl&tem the underlying functiofis(p) with
de »#K de K de »K de —K
e P |=—=(Pr | and — Pla) == D), (1.10, 1.11)
dr‘){i:l}( ) df)( ) dr){izl}( '+1) df)( +1)
where
dTs _ dTsdp
dp dp dp’

The linear system of Eqgs. (1.7 - 1.11) is solvedrideoto obtain thel3spline coefficientsi.
The resulting spline function and its first derivatiis continuous over its full domain of
definition. A more general description of the SBifiethod is given in [1, 11, 12].
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3.3 Calculation of inverse functions using the example of ps(T)

The simulation of processes with small spatial &inte discretization requires the inverse
functions to be numerically consistent with theorresponding forward functions. The
utilization of quadratic spline polynomials enabldse fast calculation of numerically
consistent inverse functions. For example, fromsghiee function fofTs(p) an inverse spline
function forps(T) can be obtained by solving Eq. (1.6) in term¢heftransformed pressuie
with

-82/8%-2A¢ (7
25

Py (T) = + R, (1.12)

C(T)=a,-T.
For the monotonic functiofyg; (P) in the interval {}, the sign (£) in Eq. (1.12) equals
sgn® )=+. In order to calculatps(T) from Eq. (1.12), the corresponding intervgl, {vhere
the given temperaturE is located, must be determined. For this purptheeauxiliary spline
function p2“* (T) and Eq. (1.5) are used. Then, the inverse splatgnpmial T)é?l\}/ (T),
Eqg. (1.12), is evaluated. The result must fulfé tondition described by Eq. (1.4); otherwise,
the indexi needs to be incremented or decremented and tbelaizn repeated. Eventually,
Ps is converted tops with the inverse transformation functiop(ps). A comprehensive
description of the calculation of inverse functidram monotonic and non-monotonic spline

functions is given in [1, 11, 12].

Sy



3.4 Two-dimensional splinefunctionsusing the example of p(v,e)

Analogously to the one-dimensional case discussesiection 3.2, the generation of a two-
dimensional bi-quadratic spline function is ille@ed using the example @iv,e). Two
separate spline functions for the liquid regionrddhe gas region G are prepared. Again,
variable transformations are applied to reducectienge in curvature, i.e., to minimize the
third derivatives that cannot be reproduced by Uaegatic polynomials. For this purpose,
both, the dependent and the independent variable®e transformed. Thus, the bi-quadratic
spline polynomials can reproduce the transformexgbgnty function more accurately. In the
gas phase, the changes |n are almost proportional to changes én Therefore, a
transformation ofe is not required. Depending on the desired rangeatiflity, suitable
variable transformations afin the gas phase can be eitlver vl v=4%v, orv=In (v) A
transformation of the dependent variaples also possible, but is not applied in this exemp
For some functions, a combination with the indegend/ariables, e.gp = pv, is useful to
efficiently linearize the property function. Variabtransformations can also be utilized to
distribute the nodes in the desired range of \glichore efficiently. Through the use of a so-
called scaling transformation, the irregularly stdpange of validity of the liquid region L,
see Fig. 5, is mapped onto a rectangle, see Fitheélinear scaling function reads

Vimax ~ mln(é[qv_ Wln 9)+ Viins

Vmax( ) mln

where Ymin(8) = M Bnax 9 ang Vimax(€) = iq_spinl 9 are reﬁresented by quadratic spline
functions and the free parameters are sé(t“t@_ and Ymax

V(v,e=

2.1)
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Each spline functionp-(v,e) and pS(v,e), is created in transformed coordinates and
interpolates values between a grididtliscrete nodes (see Fig. 7). The; (Y, g ) values at
the nodes are calculated from the underlying eqnaif state. ThéJ spline polynomials are
connected at knots, which are located in the mitiélsveen the nodes aloing and e. The

ViK and eﬁ< values of thel¢1)(J+1) knots are

k1, .
vi*+<1=§(\4 +V41), i=1,..1-1 (2.2)
K 1, _ IS
v =V1‘§(V2‘ V), Y "‘E(V ~Y-1) (2.3,2.4)
1 .
e§<+1:§(q + %), i=1,..J-1 (2.5)
1 1
o =a-(e- ¢, and du=e+ (e~ 0e4).  (26,27)

The p positions of the knots result from the spline alhpon as explained below. A spline
polynomial ranges over the cellj} between

v <v<v¥; and f<e<éy (2.8, 2.9)

and intersects the nodigXat p; ; (¥, € ).

Cell {i,j}, where the spline

oA /polynomial Py is valid e
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Vi Vi Vigl boundary conditions are defined

Figure 7. Grid of nodes and grid of knots Wit cell.

cell {ij}, where the spline polynomi
p{i,j}(\_/, e is valid.

The number ofJ nodes is chosen to ensure the required accurattyeafpline function over
its full domain of definition. The nodes are distried equidistantly along ande, so that a

simple search algorithm can be used to determmeeh {i,j} in the grid of knots that fulfills

the Egs. (2.8) and (2.9) for a given pair of transfed variablegVv, €). For equidistant nodes,
and therefore equidistant knotgndj can easily be calculated from



o _oK
i:floor(v v J and (2.10)

j:floor(e_ef} (2.11)

The distribution of nodes and knots can also be pudatied by piecewise equidistant nodes,
in ranges for whichAv =V, -V, or Ae= ¢, — g respectively, are constant. In each cell
{i,j} a bi- quadratic polynomial

Py (V. 8= Zz au (V- vk (ele)l_l (2.12)

k=11=1
is defined. The B coefficientsaju of the IJ spline polynomials are obtained from the
conditions described in the following. Figure 8udtrates the location of points, where
boundary conditions are defined at a cell. EacktheflJ polynomials Pri i) (\7, e) intersects
the nodei(j)

i, j} (\_/.,q): R; (?/, P) i:1,...i|K, ) (h% )J(i _K)(2.13)
(ﬁamg@aﬂues at the midpoints of the cell boundarl(es'J J & , and

, marked with gray circles in Fig. 8, are equathe corresponding values of the

adjacent cells

i, i) (\_".51 ej): B+ (_}}il, ?) i=1..1-1, 1=1..3, (2.14)

i, v, i=1..,, j=1..J-1 (2.15)
) ( i ) Qm}( fﬂ) (iK,j) (iK+1,j) (9p/0e),
I(urth?rmor(s the, 9)er|vat|ve e at and , as well as v at

, are equal to the corresponding derivatives oftjacent cells

(Z_Sje{i ! (\z*il,q)z(%je{iﬂj}(ﬁl, ¢) i=L.u-1  j=1..J, (216)
(%) ) (% e)= (gg . (V. &)  i=1..0, j=1..J-1 (217)
vii.j} Vi +3

In addition, thep values and the crossed derlvatl @§p avae at the four knots at the

corners ( N ) ( ,J ) ( +1,J : and | +1j +1 are equal to the
corresponding values of the neighboring ceIIs
i, i) ( i+ &): %+l,j}(_};il’ F) i=1..1-1, 1=1..3, (2.18)
R g} ( M1 )= Ri+1,) (_\}11’ §+1) i=1..1-1 (2.19)
oy (7 &) = By (3 B) i=1,..1, i=1..J-1 (2.20)
Py (W ) = g (Vo B j=1..0-1 @21
%ape (\7i51,<%<)=%f’4 (Vi &) i=1,..0-1 j=1..J, (2.22)
{i.i} {i+1j}

ﬁ (\7i51’ e?](+1) :% (Tﬁl é<+1) i=1..1-1 (2.23)
{i+13}



0°p (v &)= GpJ (V. &a)  i=1.0, i=1..0-1 (2.24)
{i j +3

Fae{i " o0
9°p p - o
F&e{l 5 (Vl +1 éj<+1) 0 J{ e (\f+11 é+1) j=1,..J-1 (2.25)

At the outer boundaries of the grid of knots, tléoiving values are provided from the
underlying equation of state

(3—3 di (@)= ( j (¥ 5) i=1..J,  (2.26)
), )= () () s, @2
2 Iy (7.d)=(32) (7€) =11, 2.28)
(% ol (v"%ﬂ):(g_gv (v §4) i=1...1, (2.29)
%)e{m}(vf'ef) 20[ 4 230
%e{,,ﬂ(v'ﬁl’ef) 2[4 @3y)
%;)e - (%, )= %Pe(vf &.4), (2.32)
%}e{u} (05)= 2 s 6. 239

The linear system of Egs. (2.13 - 2.33) is solvednder to obtain thel9® spline coefficients
ajk. The resulting spline function and its first datives are continuous over its full domain
of definition. A more general description of theTBmethod is givenin [1, 11, 12].

3.5 Calculation of inverse functions using the example of e(p,v)

Analogously to the one-dimensional inverse functiigsctussed in Section 3.3, a numerically
consistent inverse spline function fep,v) is obtained from the spline function fpfv,e).
The bi-quadratic polynomial spline function givem kq. (1.6) is solved in terms of the
specific internal energg with

1 (- -8 iJBJZ;:“.} G(9) .

(2.34)

where

A :%13+AV(1'1‘ 2t R 3@7")’



B = lez‘*AV(ﬁl 2t R 3zﬁi_V)' and

Ci(p)= alel‘*AT/( fort i 3ﬁi_V)‘ .
For monotonic functiongy; ;, (€)y in cell {i,j}, the sign(t) in Eq. (2.34) equalsgn(; ). In
order to calculate(p,v) from Eq. (2.34), the corresponding celjj¥, where the given state
point (p,v) is located, must be determined. For this purptise,auxiliary spline function
'YX (p V) and Egs. (2.10, 2.11) are used. Then, the invaptiee polynomiale{'!\"}i (pv),
Eq. (2.34), is evaluated. The result must fulfie teondition described by Eq. (2.11),
otherwise, the indexneeds to be incremented or decremented and th@atabn repeated.
For the spline functiop(v,e) for the liquid region L a scaling function, EQ.1), with the
dependent variable of the inverse spline functiog{p,v) is applied. In this case, an analytic
solution for the inverse spline function cannotgoevided. Fast iterative procedures to solve
this problem are given in [12]. Due to the volunm®maly of water at low temperatures, the
property functione(p,v) is non-monotonic in this range of state and twssible solutions
must be distinguished as discussed in [1, 11,Ih2grse functions of input variables that are
both neitherv nor e, such asgh), (p,s), and f,s) need to be calculated from the spline
functions of ¢,e) by iteration. For this purpose, fast algorithros ¢alculating the desired
variables by iteration from a non-linear systemeqgtiations are used as described in [12].
Auxiliary spline functions have been generated dtcdate the required initial values far
ande.

3.6 SBTL functionsfor thesingle-phaseregion

For each of the two single-phase regions, L andpBne functions for the calculation pf T,

s, w, 77, A =f(v,e) have been generated. The specific enthllayd the specific Gibbs free
energyg are calculated frorh=et+pv andg=h-Ts Since the computation g{v,e) involves the
evaluation ofp(v,e), T(v,e), ands(v,e), additional spline functions are provided for ev¥aster
calculations ofg(v,e). The isobaric and isochoric heat capacities ateutated fromp(v,e)
andT(v,e) according to their definitions

o), 7o)
c :(@j = ov € i oe v and C\/:(@)
T LA i

oe ),\9dv), \dv/\de/,
Sincecp andcy contain the first derivatives of the bi-quadragpine functions fop(v,e) and
T(v,e), the first derivatives of, andc, are discontinuous. In many process simulatioreseh
derivatives are not required. For all other caaddjtional spline functions for the calculation
of cp(v,€) andc(v,e) have been generated.
The correlating equations for the dynamic viscogjtjyl4] and the thermal conductivity
[15] contain critical enhancement terms to descthee behavior of these properties in the
critical region. The critical enhancement termseatepon the derivativéav/ap)T, which is
infinite along the spinodals. This causes numerdifficulties and therefore, the critical
enhancement terms were omitted for the generafidineo;(v,e) and A(v,e) spline functions.

For the dynamic viscosity the critical enhancement is only significant imesty small region
around the critical point and the omission of théaal enhancement is recommended in [14]




to simplify the calculation for industrial use. Ftre thermal conductivityl, the critical
enhancement is significant in a larger range ardghadritical point as discussed in [15].

Table 1: Dimensions of the grid of nodes of eagle) spline function for the liquid region L
based on IAPWS-95 and the IAPWS releases on vigcasd thermal conductivity [14, 15]

v [m¥Kkg] e [kJ/kg]
V(v,u) (see Eq. (2.1)) -
Spline function Vinin nodesg| Ein node
_ node || node
Vinax |~ emax
L 50
20 -8
. 20 150 250 350
P (V’e) 75 25
95 204002
75
1100
e g
L 10 200
(v 100/1%¢ {204002}[ |
M1 8 o
L 10 10
S (V’@ 100[ 0] 200
S 2040.02-" -
- 8 1
100 10 10
95 200
wh (v, ¢ { 50} 1750
100 75
12040.02"
1 8 __75
L 10 300
n-(v.e LOO}[ 9 150
| 2040.02"
-8 B
L 10 10
L 100 50
A~ (v.¢) Loo}[ ] 1750
50
2040.02




Table 2: Dimensions of the grid of nodes of easte) spline function for the gas region G

based on IAPWS-95 and the IAPWS releases on vigcasd thermal conductivity [14, 15]

v [m¥Kkg] e [kJ/kg]
V(v) =In(V) -
Spline function Vinin nodes fmin | ode
_ node node
Vmax emax
p° (v ¢
TG Vv, e - q
o V(l'G" 103) 1845
s°(v. ¢ iy 100 100
v(8x10 ) 2650
w® (v, ¢ 200 4085.58 0
V(1189.0} -
”G (V,e) L n
/]G(v,e)

The grid dimensions of each,€) spline function are given in Tables 1 and 2.Ha tiquid
region L, a scaling transformation for the speciatumev of the formv(v, e), Eq. (2.2), is
applied. Thus, the shape of the grid of nodes spmeds to the shape of the liquid region L
(see Figs. 1, 5, and 6). In the gas region G, pleeic volumev is transformed a§ =1In(v).
For piecewise equidistant nodes, the domain ofcthresidered variabl&,, <V <V, OF
€nin < €< 6,4 IS subdivided in several intervals with equidistaades. In the tables below,
this is described with

V . .
M 1Modes Emin node

nodes and " || nodes ,
max emax
where the boundaries of the intervals are givethencolumn on the left and the number of
equidistant nodes between them is given in thenaolon the right. Nodes outside the range
of validity are extrapolated appropriately. Invefaactions for calculations fronp(T), (p,v),
(p,h), (p,s), and f,s) have been implemented as described in SectionF&b each input
variable combination, analytical derivatives arevied.

3.7 Property calculationsin the two-phaseregion

The saturation states could be calculated fronitagwell criterion, i.e., equal pressures and
specific Gibbs free energies at constant temperator both phases; but for the sake of
simplicity, a spline function foffs(p) is used instead. For property functions i), (p,h),

and 0,s), the properties at saturation from can be caledldrom the inverse functions, such



asv =N (pT= T(pP) andV' = VNV (g T= T( P). In order to calculate the properties
at saturation fromve), the following set of equatioyX), Egs. (3.1 - 3.5),

Fi(X)=0=p"(vV,é)- n (3.1)
Fo(X)=0=p°(, é’)— (3.2)
F3(X)=0=T"(v,€)- E(rg) (3.3)
Fs(X)=0= TG(\/' €)-T( p), and (3.4)
_ _e-¢e
Fo(X)=0=3 e (35)

is solved for the vector of unknown$ =(ps, V, V', é, &)". This is done through the use of
Newton’s method for non-linear systems of equatimynsolving

J(Xy)AX =F (X,) and (3.6)

Xy = X ~BXy (3.7)
in each iteration stefg until convergence is reached. The Jacobian ma(®) is given
analytically as shown in [1, 11, 12]. Initial vatuef the unknown variables are calculated
from auxiliary spline functions forps(v, e) and for v/(T), V'(T), €(T), and €'(T). The
vapor mass fractioris calculated from

Xx=(v=-V)/(V-V) orx=(e-€)/(é- 8. (3.8)
Then, the other mass-averaged properties can belat@d from the properties at saturation,
as for example the specific entropfrom s = 2 (V, &), s'= 2 (V, &), and

s(ve= &+ X 5 3. (3.9)
Additionally, algorithms for calculating the propies in the two-phase region have been
implemented for §,x), (T,X), (p,v), (p,h), (p,s), and {,s) inputs. For each input variable
combination, analytical derivatives are provided.

3.8 Deviationsof the SBTL functionsfrom |APWS-95

For the development of SBTL functions for the Idjuegion L and the gas region G, the
permissible deviations from IAPWS-95 as well asifrihe IAPWS formulations for viscosity
and thermal conductivity shown in Table 3 have bssin The SBTL functions represent the
IAPWS formulations within these permissible dewas. The deviations in pressysé,e),
temperaturd(v,e), and specific entropg(v,e) from IAPWS-95 in the liquid region L and the
gas region G are depicted in Figs. 9, 10, and 11.



Table 3: Permissible deviations for the development of SBiihctions from IAPWS-95 as
well as the IAPWS formulations for viscosity anemmal conductivity [14, 15]

SBTL function Liquid region L Gas region G

p<2.5MPa| |Ap/p| <0.6 %

p(v,e) |Ap/p| < 0.001 %
p>2.5MPal |Ap| <15 kPa

T(v,e) IAT| < 1 mK AT| <1 mK

s(v,e) |As| < 10° kJ/(kg K) ps| < 10° kJ/(kg K)

w(v,€e) |Aw/w| < 0.001 % Aw/w| < 0.001 %

n(v,e)? |An/n| < 0.001 % An/n) <0.001 %

A(v,e)2 |AA/A] < 0.001 % [/ <0.001 %

2 The critical enhancement of dynamic viscosity #metmal conductivity has been omitted
(see Section 3.6 for details.)
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Figure 9: Deviations inp(v,e) from IAPWS-95 in the liquid region L and the gagion G.
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Figure 10: Deviations inT(v,e) from IAPWS-95 in the liquid region L and the gagion G.
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Figure 11: Deviations ins(v,e) from IAPWS-95 in the liquid region L and the gagion G.

3.9 Computing-times comparisons

The calculation of property functions from IAPWS-95 computationally intensive.
Therefore, the computing times of the spline fumtdi described in Sections 3.6 and 3.7 have
been compared with those of the computationallyerefficient IAPWS-IF97 formulation,
which is used in many industrial applications. Tostrate the difference in computing speed
between IAPWS-95 and IAPWS-IF97, the computing iroéthe spline functions fq(v,e)
andT(v,e) have also been compared with IAPWS-95.



The Computing-Time RatiddTR) is:
_ Computing time of the calculation frolAPWS-IF97 (IAPWS-95

CTR :
Computing time of the calculation frorne SBTL algorithms

IAPWS-IF97 property functions were computed frone thxtended IAPWS-IF97 Steam
Tables software [16]. Since the region definitimighe SBTL functions are different from
the regions of IAPWS-IF97, the computing times abthb formulations include the
determination of the region that corresponds togilien state point. The IAPWS-95 property
functions were computed from the internal routimésREFPROP [17], where the phase
(liquid or vapor) is known and no phase tests amtopmed. None of the implementations of
IAPWS-IF97, IAPWS-95, or the SBTL method takes adage of information from
previously calculated state points. The computinge$ were measured by means of software
similar to NIFBENCH [5] with 100,000 randomly didtuted state points in the
corresponding region. All algorithms have been citedpinto single-threaded software with
the Intel Composer 2011 with default options. Testd were carried out on a Windows 8
computer equipped with an Intel Core i7-4500U CPith\2.39 GHz and 8 GB RAM. The
results of the computing-time comparisons are sumzein Table 4.

Table 4. Computing-time ratios (CTR) of SBTL property fuiocts in comparison to the
iterative calculations from IAPWS-IF97 and from MAFS-95 (in parentheses)

IAPWS-IF97 Region
SBTL function 1 2 3 4 5
p(v,e) 130 (243 271 (434) 161 19.6 470
T(v,€) 161 (25%) 250 (410) 158 20.6 442
s(v,e) 164 261 160 17.8 449
e(p,v) 2.0 6.4 2.8 5.6 3.2
T(p,h)? 2.9 &15000) 4.7 (6760) 3.0 4.4 26.5
v(p,h)? 3.8 £14500) 6.1 (6900) 5.1 2.6 25.2

2 Calculated from explicit spline functions rathiean from inverse spline functions.

4 SBTL property functionsfor other fluids

In order to apply the SBTL method to property fumas for any fluid, the software
FluidSplines [12, 18] has been developed. The uyidegrfluid properties are provided from
external databases such as the property librawes the Zittau/Gorlitz University of Applied
Sciences or REFPROP [17] from NIST. FluidSplineplaments all the features of the SBTL
method and assists the user in generating splimetifuns and inverse spline functions for a
given range of validity with a user-specified agneat with the underlying property
formulations.



5 Application of the SBTL method in RELAP-7

RELAP-7 (Reactor Excursion and Leak Analysis Progrf2] is the next generation nuclear
reactor system safety analysis code currently bdawgloped at Idaho National Laboratory
(INL). The code is based on the INL’s scientifidta@re development framework MOOSE
(Multi-physics Object Oriented Simulation Environmbte [19]. By using the MOOSE
development framework, RELAP-7 can be tightly (iroplly) coupled to over 20 different
MOOSE based applications ranging from 3-D transmesitron transport, to detailed 3-D
transient fuel performance analysis, to long-termateamnal aging, thus leveraging with
capabilities developed through other programs.

The primary basis of the RELAP-7 governing theoncludes, at a system level,
nonequilibrium two-phase flow, reactor core heansfer, and reactor kinetics models.
Because of the broad spectrum of phenomena ocgurritight water nuclear reactor coolant
flows (boiling, flashing, and bubble collapse, cimgk blowdown, condensation, wave
propagation, large density variations, etc.) iingerative that models accurately describe
compressible multiphase flows exhibiting metastaitédes, with multiple velocities, and that
the models be well-posed (in the sense of Hadamamnd) unconditionally hyperbolic. A
detailed summary of model requirements may be faanfR0]. It is known that van der
Waals or cubic equations of state used with EuteNavier-Stokes equations correspond to
ill-posed mixture models because the square ofsthend speed becomes negative in the
spinodal zone. To avoid this difficulty we utilizzemodel in RELAP-7 that considers phase
change as a kinetic transformation rather than ttemmodynamic one. In this model each
phase retains its own pure substance equatiorata. Sthus, each phase has its own dynamics
and thermodynamics (velocity, density, temperatpressure, etc.), and the modeling of mass
transfer is a relaxation towards equilibrium by tkieetic process. With such a kinetic
representation, metastable states are presentixere sound speed is always well defined,
and hyperbolicity is preserved during interphasessndransfer. Furthermore, when
equilibrium is reached, the usual properties of piase diagram, such as latent heat of
vaporization and saturation temperature, are reedve

To meet this criterion, we have adopted the 7-egmaimodel [20-24] for fully
nonequilibrium, fully compressible, two-phase flowshis equation system meets our
requirements, being both hyperbolic and well-posed] it has an intuitively pleasing set of
genuinely nonlinear and linear degenerate eigergajwave speeds). This same 7-equation
two-phase flow model is also being utilized to duihe next generation 3-D high-resolution,
multi-scale two-phase solver to seamlessly coujile the RELAP-7 systems analysis code.
The one-dimensional form, with variable cross-secflow area, of the fully nonequilibrium,
7-equation two-phase flow model used by RELAP-dascribed by the balance of mass,
momentum, and total energy for each phase (liquid @apor) plus a volume fraction
evolution equation for each phase (except as rtmetmv for two phases), respectively, as

liquid phase:
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bﬁj + ngq :_rint,g'AﬁntA_rwall,g (4.1)
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For two phases, Eq. (4.8) is conveniently repldnethe (algebraic) saturation constraint

a+ay =1. 4.9)
In the balance equations above, ititerfacial variablesare
L I ( j(tb u) (4.10)
|n n -
4 Zg
7 R
SRRl AL (4.11)
Z + Zg
Z 0 - R
e = T+ sg [ 'j i (4.12)
Z, + Z, ox ) 4 + A
iy +
Tk (4.13)
Z + Zg
Zc=pc (k=179 (4.14)
Pint = A, sat(plnt) (4.15)
_ 12 _
Hy int = Ny, int = Uint (k=1 g) (4.16)
with themechanical relaxation coefficienggven by
1
—_ Ant
4.18
M= 7, +7, (4.18)

and thaenterphase mass transfgiven by

rint .= hzonv, I(TI mt) rEonv g( Ty Tlnt) hconv ( ) r-Eon,v 5 g Tir)l (4'19)
' g int h int Lv(Tlnt)
where
Tint = sat(T)int) (4.20)
hk, int = h< sat(Tint) ( k=1, g) : (4-21)

In the equations above, the notations are clasmal the two-phase flow literature.

If full mechanical relaxatior{in which phasic pressures and velocities arexeglao single
values, see for example [25]) along with fthlermodynamic relaxatioriin which phasic
temperatures and Gibbs energies are relaxed ttesuadues) occurs, the 7-equation model
above dynamically reduces to the 3-equation Homeges Equilibrium Model (HEM)
model. Formally, the three governing balance equatof the HEM model are identical to the
Euler equations; however, the density is an equilib volume fraction weighted mixture
value, the specific internal energy is an equilibrimass fraction weighted mixture value, the
pressure and temperature are thermodynamic equrbralues, and the velocity is the
mixture barycentric value. Though the 3-equatiorMHiBodel is the simplest and oldest two-



phase model it has many limitations and some qiridperties, e.g. effective sound speed, are
more difficult to compute, and may even exhibitcdistinuities in transitions from single- to
two-phases. For applications where the HEM reptasien is physically appropriate, it is
more economical to begin with the 3-equation modgher than carry the additional expense
of the relaxed 7-equation model. The 3-equation HEMIel is included also as a selectable
model in RELAP-7.

For the accurate simulation of two-phase flows VREBLAP-7 the equation systems must be
closed (partially) with accurate thermodynamic diques of state to obtain the properties of
steam and water. Moreover, for CPU-intensive nucaérisimulations with this code,
thermodynamic and transport properties of steamveatgr are calculated extremely often.
Examination of the governing partial differentigjuations of the 7-equation two-phase model
shows that their dependent variables are mass-,emimm-, and total energy-densities. Thus
the thermodynamics variables resulting from theiuton are phasic specific volume and
specific internal energ{v,, &)

(k: l, g) (4.22)

8 = - (k=19) (4.23)

or, in the case of the HEM two-phase model, theesponding solution dependent variables
are equilibrium mixture value$v, €). Determining properties as a function (of, g ) or

(v, e) from an accurate equation of state such as IAPW/SvBuld normally require a
functional inversion, because these are not thembtgncies upon which it is constructed,
based upon an iterative numerical solution that vexy time-consuming and not
computationally efficient. In addition, for initiatondition specification and boundary
condition calculations, other thermodynamic depeniés are needed, such as(V, f),
a(Se R Yi(so n). and pe(h, s). To provide fast and accurate property calculation
algorithms, RELAP-7 was modified to employ the 8eiBased Table Look-up (SBTL)
method based on IAPWS-95, as described above. Be@ach phase of the 7-equation two-
phase model treats only that phase, which can leither the stable or metastable (i.e. in a
state between the saturation line and the apptem@nodal line) state, the IAPWS-95/SBTL
package was modified to accommodate this needtheddEM two-phase model the IAPWS-
95/SBTL package produces only equilibrium propsrtiehe utilization of the SBTL method
has enabled RELAP-7 to eliminate the approximatiesed gas analytical equations of state
and to complete the major hurdle of incorporatihg thumerically efficient calculation of
accurate water and steam thermodynamic propegjes [

To fully close the 7-equation two-phase model, aoldal relations must be supplied which
are very significantly dependent upon the flow togy (orflow regime such as relationships
between the fluid phases and the wall (frictig, ., heat-transfeQ,q k. cony» @and mass-
transfer £, 4) and relationships describing the bulk interacdidretween the phases
(interphase mass-transfeil;,; ,, momentum-transfer, and energy-transfer) whicheddp
strongly upon the interfacial area concentratiord afistribution. Many of these flow
topology-dependent closure correlations have beéansively investigated and partially



validated in existing system analysis codes. Suabuces are currently being implemented
into RELAP-7 and are partially described in [2].

Because these complex flow topology-dependent cdgsare a work in progress, it will not
be reported herein. However, a unique advantagheof7-equation two-phase model is its
ability to execute in a completely nonequilibriunammer, i.e. with absolutely no interaction
between the phases other than sharing the samecHannel, which will effectively nullify
the important physical effects due to flow topoldgg]. For example, let us consider a two-
phase flow of water and its vapor through a conwergiverging nozzle with cosine variation
of the cross-sectional area such that the inletsssection has the same area as that of the
outlet, cosine- nozzlelf (1) the interphase heat and mass transfersuared off, (2) the
pressure and velocity relaxation coefficients aeaso to zero, and (3) the initial volume
fraction is spatially constant with (4) the inledumdary volume fraction set to match this
constant value for all times, then the two-phasw fbolution of the 7-equation model should
identically match that of two, single-phase flowgater and its vapor) each flowing through
the same nozzle. We consider the symmetrical cosazele to be of length 1.0 meter, with
Arvoa/ A =0.33, and being spatially discretized with 1000 contws, linear finite
elements. The nozzle problem is executed as aerarsoblem using second order backward
difference (implicit) time integration and run tteady state at approximately 1.1 s. Both
phases have the same in&agnationboundary condition specified at approximately the
saturation conditionp, =1.001¢ Pa and T, =453K at x =0.0 for all time. The inlet liquid
volume fractiona; =0.5 is specified atx=0.0 for all time. The nozzle’s liquid volume
fraction spatial distribution is specified ag =0.5 for 0.0<x<1.C at time t=0.0. The
nozzle’'s remaining initial conditions ar|e=1.OEl(53 Pa, T =453K, and velocityv =0.0 for
0.0< x< 1.C (stationary saturation condition) at time= 0.0. The nozzle’s outlet boundary
condition is specifiecstatic pressure for both phases gf =0.500¢ Pa at x=1.0 for all
time. Steady state solutions for this nonequilitbriproblem are shown in Figures 12 and 13
where it is seen that, because phase change arghase heat transfer are not allowed and
because phasic pressures and velocities are rweall to equilibrate, both compressible
phases must necessarily acquire states significantb the metastable regionsA few
observations are apparent. The vapor solutionasctassical compressible solution with a
standing shock wave in the diverging portion of tiezzle at approximately 0.82 meters.
Examining the liquid phase pressure, the liquidisoh might at first appear to be classical
incompressibleventuri flow. However, upon further examining thguid phase density and
temperature profiles it is revealed that the ligpithse solution indeed follows the classical
compressible flow solution for fully subsonic fldshock free). This is as it should rightly be,
because RELAP-7 treats both the liquid and vapases as being compressible. For this low-
speed, lossless flow the computed static pressurdeainlet should exactly match the
specified static pressure set for the outlet.
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Figure 12: Nozzle phasic thermodynamic property at steads $ta completely

nonequilibrium flow.
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6 Conclusions and outlook

The new “IAPWS Guideline on the Fast CalculatiorStéam and Water Properties with the
Spline-Based Table Look-Up Method (SBTL)” has baeplied to the scientific formulation
for water and steam IAPWS-95 and the latest IAPW®tilations for viscosity and thermal
conductivity. The newly generated SBTL functionslude the metastable liquid and the
metastable vapor regions and are applicable faspres up to 100 MPa and temperatures up
to 1273.15 K. Depending on the considered propanty the range of state, the deviations of
the SBTL functions from their underlying propertrulations are 1-100 ppm. The property
functions of specific volume and specific intereakrgy ¥,€), as used in RELAP-7, are more
than 400 times faster than the iterative calcutafrom IAPWS-95. Moreover, fast inverse
functions of pressure and temperatyd), pressure and specific volumg\), pressure and
specific enthalpy,h), pressure and specific entrogyd|, and specific enthalpy and specific
entropy b,s) have been developed. The SBTL functions and timierse functions are
numerically consistent with each other and contirslpdifferentiable once.

The SBTL functions have been implemented into thelgar reactor system safety analysis
code RELAP-7 to consider the real fluid behaviorwaiter and steam and to enable the
utilization of a novel 7-equation two-phase flow aeb Prior to the incorporation of the
SBTL method in RELAP-7, a stiffened gas equatiorstate was used for each phase with
appropriate modification to link the reference etafi26]. This was useful for achievement of
rapid development progress, but for use with remlear power plants, accurate water and
steam properties are essential, not only for douilin properties but especially for the
metastable properties required for the advanceduat®n two-phase model of RELAP-7.
The attainment of accurate properties in an efiiciemanner with the SBTL method
constitutes a completion of a major hurtle in tieigard.

Projects are being planned to apply the SBTL metioodther fluids, such as heavy water,
helium, nitrogen, carbon dioxide etc., and to migg) such as humid air.
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